Iramox may be available in the countries listed below.
Ingredient matches for Iramox
Amoxicillin is reported as an ingredient of Iramox in the following countries:
- Oman
International Drug Name Search
Iramox may be available in the countries listed below.
Amoxicillin is reported as an ingredient of Iramox in the following countries:
International Drug Name Search
Sensipar is indicated for the treatment of secondary hyperparathyroidism (HPT) in patients with chronic kidney disease (CKD) on dialysis [see Clinical Studies (14.1)].
Sensipar is indicated for the treatment of hypercalcemia in patients with Parathyroid Carcinoma [see Clinical Studies (14.2)].
Sensipar is indicated for the treatment of severe hypercalcemia in patients with primary HPT who are unable to undergo parathyroidectomy [see Clinical Studies (14.3)].
Sensipar tablets should be taken whole and should not be divided. Sensipar should be taken with food or shortly after a meal.
Dosage must be individualized.
The recommended starting oral dose of Sensipar is 30 mg once daily. Serum calcium and serum phosphorus should be measured within 1 week and intact parathyroid hormone (iPTH) should be measured 1 to 4 weeks after initiation or dose adjustment of Sensipar. Sensipar should be titrated no more frequently than every 2 to 4 weeks through sequential doses of 30, 60, 90, 120, and 180 mg once daily to target iPTH levels of 150 to 300 pg/mL. Serum iPTH levels should be assessed no earlier than 12 hours after dosing with Sensipar.
Sensipar can be used alone or in combination with vitamin D sterols and/or phosphate binders.
During dose titration, serum calcium levels should be monitored frequently and if levels decrease below the normal range, appropriate steps should be taken to increase serum calcium levels, such as by providing supplemental calcium, initiating or increasing the dose of calcium-based phosphate binder, initiating or increasing the dose of vitamin D sterols, or temporarily withholding treatment with Sensipar [see Warnings and Precautions (5.1,5.6)].
The recommended starting oral dose of Sensipar is 30 mg twice daily.
The dose of Sensipar should be titrated every 2 to 4 weeks through sequential doses of 30 mg twice daily, 60 mg twice daily, and 90 mg twice daily, and 90 mg 3 or 4 times daily as necessary to normalize serum calcium levels [see Warnings and Precautions (5.6)].
Sensipar tablets are formulated as light-green, film-coated, oval-shaped tablets marked with “AMG” on one side and “30” or “60” or “90” on the opposite side of the 30 mg, 60 mg, or 90 mg strengths, respectively.
Hypocalcemia: Sensipar treatment should not be initiated if serum calcium is less than the lower limit of the normal range [see Warnings and Precautions (5.1)].
Sensipar lowers serum calcium and, therefore, patients should be carefully monitored for the occurrence of hypocalcemia. Potential manifestations of hypocalcemia include paresthesias, myalgias, muscle cramping, tetany, and convulsions.
Serum calcium should be measured within 1 week after initiation or dose adjustment of Sensipar. Once the maintenance dose has been established, serum calcium should be measured approximately monthly [see Dosage and Administration (2.1)].
If serum calcium falls below 8.4 mg/dL but remains above 7.5 mg/dL, or if symptoms of hypocalcemia occur, calcium-containing phosphate binders and/or vitamin D sterols can be used to raise serum calcium. If serum calcium falls below 7.5 mg/dL, or if symptoms of hypocalcemia persist and the dose of vitamin D cannot be increased, withhold administration of Sensipar until serum calcium levels reach 8.0 mg/dL and/or symptoms of hypocalcemia have resolved. Treatment should be reinitiated using the next lowest dose of Sensipar [see Dosage and Administration (2.1)].
In 26-week studies of patients with CKD on dialysis, 66% of patients receiving Sensipar compared with 25% of patients receiving placebo developed at least one serum calcium value < 8.4 mg/dL. Less than 1% of patients in each group permanently discontinued study drug due to hypocalcemia.
Sensipar is not indicated for patients with CKD not on dialysis. In patients with secondary HPT and CKD not on dialysis, the long term safety and efficacy of Sensipar have not been established. Clinical studies indicate that Sensipar-treated patients with CKD not on dialysis have an increased risk for hypocalcemia compared with Sensipar-treated patients with CKD on dialysis, which may be due to lower baseline calcium levels. In a phase 3 study of 32 weeks duration and including 404 patients with CKD not on dialysis (302 cinacalcet, 102 placebo), in which the median dose for cinacalcet was 60 mg per day at the completion of the study, 80% of Sensipar-treated patients experienced at least one serum calcium value < 8.4 mg/dL compared with 5% of patients receiving placebo.
In clinical studies, seizures (primarily generalized or tonic-clonic) were observed in 1.4% (43/3049) of Sensipar-treated patients and 0.7% (5/687) of placebo-treated patients. While the basis for the reported difference in seizure rate is not clear, the threshold for seizures is lowered by significant reductions in serum calcium levels. Therefore, serum calcium levels should be closely monitored in patients receiving Sensipar, particularly in patients with a history of a seizure disorder [see Warnings and Precautions (5.1)] .
In postmarketing safety surveillance, isolated, idiosyncratic cases of hypotension, worsening heart failure, and/or arrhythmia have been reported in patients with impaired cardiac function, in which a causal relationship to Sensipar could not be completely excluded and which may be mediated by reductions in serum calcium levels [see Adverse Reactions (6.2)].
Adynamic bone disease may develop if iPTH levels are suppressed below 100 pg/mL. One clinical study evaluated bone histomorphometry in patients treated with Sensipar for 1 year. Three patients with mild hyperparathyroid bone disease at the beginning of the study developed adynamic bone disease during treatment with Sensipar. Two of these patients had iPTH levels below 100 pg/mL at multiple time points during the study. In three 6-month, phase 3 studies conducted in patients with CKD on dialysis, 11% of patients treated with Sensipar had mean iPTH values below 100 pg/mL during the efficacy-assessment phase. If iPTH levels decrease below 150 pg/mL in patients treated with Sensipar, the dose of Sensipar and/or vitamin D sterols should be reduced or therapy discontinued.
Cinacalcet exposure, as defined by the Area Under the Curve (AUC0-inf), is increased by 2.4 and 4.2 fold in patients with moderate and severe hepatic impairment, respectively. These patients should be monitored throughout treatment with Sensipar [see Use in Specific Populations (8.7) and Clinical Pharmacology (12.3)].
Serum calcium and serum phosphorus should be measured within 1 week and iPTH should be measured 1 to 4 weeks after initiation or dose adjustment of Sensipar. Once the maintenance dose has been established, serum calcium and serum phosphorus should be measured approximately monthly, and iPTH every 1 to 3 months [see Dosage and Administration (2.1)]. Measurements of PTH during the Sensipar studies were obtained using the Nichols iPTH immunoradiometric assay (IRMA).
In patients with end-stage renal disease, testosterone levels are often below the normal range. In a placebo-controlled study in patients with CKD on dialysis, there were reductions in total and free testosterone in male patients following 6 months of treatment with Sensipar. Levels of total testosterone decreased by a median of 15.8% in the Sensipar-treated patients and by 0.6% in the placebo-treated patients. Levels of free testosterone decreased by a median of 31.3% in the Sensipar-treated patients and by 16.3% in the placebo-treated patients. The clinical significance of these reductions in serum testosterone is unknown.
Serum calcium should be measured within 1 week after initiation or dose adjustment of Sensipar. Once maintenance dose levels have been established, serum calcium should be measured every 2 months [see Dosage and Administration (2.2)].
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared with rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.
In three double-blind, placebo-controlled clinical trials, 1126 patients with CKD on dialysis received study drug (656 Sensipar, 470 placebo) for up to 6 months. The most frequently reported adverse reactions (incidence of at least 5% in the Sensipar group and greater than placebo) are provided in Table 1. The most frequently reported adverse reactions in the Sensipar group were nausea, vomiting, and diarrhea.
Seizures were observed in 1.4% (13/910) of cinacalcet-treated patients and 0.7% (5/641) of placebo-treated patients across all completed placebo controlled trials.
| ||
Placebo | Sensipar | |
(n = 470) | (n = 656) | |
Event*: | (%) | (%) |
Nausea | 19 | 31 |
Vomiting | 15 | 27 |
Diarrhea | 20 | 21 |
Myalgia | 14 | 15 |
Dizziness | 8 | 10 |
Hypertension | 5 | 7 |
Asthenia | 4 | 7 |
Anorexia | 4 | 6 |
Pain Chest, Non-Cardiac | 4 | 6 |
Access Infection | 4 | 5 |
The incidence of serious adverse reactions was similar in the Sensipar and placebo groups (29% vs. 31%, respectively).
Two hundred sixty-six patients from two of the phase 3 studies in patients with CKD on dialysis continued to receive Sensipar or placebo treatment in a 6-month, double-blind extension study (12-month total treatment duration). The incidence and nature of adverse reactions in this long term extension study were comparable to those observed in the original phase 3 studies.
The safety profile of Sensipar in these patient populations is generally consistent with that seen in patients with CKD on dialysis. Forty six patients were treated with cinacalcet in a single arm study, 29 with Parathyroid Carcinoma and 17 with intractable pHPT. Nine (20%) of the patients withdrew from the study due to adverse events. The most frequent adverse reactions and the most frequent cause of withdrawal in these patient populations were nausea and vomiting. Severe or prolonged cases of nausea and vomiting can lead to dehydration and worsening hypercalcemia so careful monitoring of electrolytes is recommended in patients with these symptoms.
Eight patients died while on study, 7 with Parathyroid Carcinoma (24%) and 1 (6%) with intractable pHPT. Causes of death were cardiovascular (5 patients), multi-organ failure (1 patient), gastrointestinal hemorrhage (1 patient) and metastatic carcinoma (1 patient). Adverse events of hypocalcemia were reported in three patients (7%).
Seizures were observed in 0.7% (1/140) of cinacalcet-treated patients and 0.0% (0/46) of placebo-treated patients in all clinical studies.
N=Number of subjects receiving at least one dose of study drug. | |||
Preferred Term | Cinacalcet | ||
Parathyroid Carcinoma (N=29) | Intractable pHPT (N=17) | Total (N=46) | |
n (%) | n (%) | n (%) | |
Number of Subjects Reporting Adverse Events | 28 (97) | 17 (100) | 45 (98) |
Nausea | 19 (66) | 10 (59) | 29 (63) |
Vomiting | 15 (52) | 6 (35) | 21 (46) |
Paresthesia | 4 (14) | 5 (29) | 9 (20) |
Fatigue | 6 (21) | 2 (12) | 8 (17) |
Fracture | 6 (21) | 2 (12) | 8 (17) |
Hypercalcemia | 6 (21) | 2 (12) | 8 (17) |
Anorexia | 6 (21) | 1 (6) | 7 (15) |
Asthenia | 5 (17) | 2 (12) | 7 (15) |
Dehydration | 7 (24) | 0 (0) | 7 (15) |
Anemia | 5 (17) | 1 (6) | 6 (13) |
Arthralgia | 5 (17) | 1 (6) | 6 (13) |
Constipation | 3 (10) | 3 (18) | 6 (13) |
Depression | 3 (10) | 3 (18) | 6 (13) |
Headache | 6 (21) | 0 (0) | 6 (13) |
Infection Upper Respiratory | 3 (10) | 2 (12) | 5 (11) |
Pain Limb | 3 (10) | 2 (12) | 5 (11) |
The following adverse reactions have been identified during postapproval use of Sensipar. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
Rash, hypersensitivity reactions (including angioedema and urticaria), diarrhea, and myalgia have been identified as adverse reactions during postapproval use of Sensipar. Isolated, idiosyncratic cases of hypotension, worsening heart failure, and/or arrhythmia have been reported in Sensipar-treated patients with impaired cardiac function in postmarketing safety surveillance.
Cinacalcet is partially metabolized by CYP3A4. Dose adjustment of Sensipar may be required if a patient initiates or discontinues therapy with a strong CYP3A4 inhibitor (e.g., ketoconazole, itraconazole). The iPTH and serum calcium concentrations should be closely monitored in these patients [see Clinical Pharmacology (12.3)].
Cinacalcet is a strong inhibitor of CYP2D6. Dose adjustments may be required for concomitant medications that are predominantly metabolized by CYP2D6 (e.g., desipramine, metoprolol, and carvedilol) and particularly those with a narrow therapeutic index (e.g., flecainide and most tricyclic antidepressants) [see Clinical Pharmacology (12.3)].
In pregnant female rats given oral gavage doses of 2, 25, 50 mg/kg/day cinacalcet during gestation, no teratogenicity was observed at doses up to 50 mg/kg/day (exposure 4 times those resulting with a human oral dose of 180 mg/day based on Area Under the Curve [AUC] comparison). Decreased fetal body weights were observed at all doses (less than 1 to 4 times a human oral dose of 180 mg/day based on AUC comparison) in conjunction with maternal toxicity (decreased food consumption and body weight gain).
In pregnant female rabbits given oral gavage doses of 2, 12, 25 mg/kg/day cinacalcet during gestation, no adverse fetal effects were observed (exposures less than with a human oral dose of 180 mg/day based on AUC comparisons). Reductions in maternal food consumption and body weight gain were seen at doses of 12 and 25 mg/kg/day. Sensipar has been shown to cross the placental barrier in rabbits.
In pregnant rats given oral gavage doses of 5, 15, 25 mg/kg/day cinacalcet during gestation through lactation, no adverse fetal or pup (post-weaning) effects were observed at 5 mg/kg/day (exposures less than with a human therapeutic dose of 180 mg/day based on AUC comparisons). Higher doses of 15 and 25 mg/kg/day cinacalcet (exposures 2 to 3 times a human oral dose of 180 mg/day based on AUC comparisons) were accompanied by maternal signs of hypocalcemia (periparturient mortality and early postnatal pup loss), and reductions in postnatal maternal and pup body-weight gain.
There are no adequate and well-controlled studies of Sensipar in pregnant women. Sensipar should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.
Women who become pregnant during Sensipar treatment are encouraged to enroll in Amgen’s Pregnancy Surveillance Program. Patients or their physicians should call 1-800-77-AMGEN (1-800-772-6436) to enroll.
Studies in rats have shown that Sensipar is excreted in the milk with a high milk-to-plasma ratio. It is not known whether this drug is excreted in human milk. Considering these data in rats, and because many drugs are excreted in human milk and there is a potential for clinically significant adverse reactions in infants who ingest Sensipar, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the lactating woman.
The safety and efficacy of Sensipar in pediatric patients have not been established.
Of the 1136 patients enrolled in the Sensipar phase 3 clinical program in patients with CKD on dialysis, 26% were ≥ 65 years old, and 9% were ≥ 75 years old. No differences in the safety and efficacy of Sensipar were observed in patients greater or less than 65 years of age. No dosage adjustment is required for geriatric patients [see Clinical Pharmacology (12.3)].
No dosage adjustment is necessary for renal impairment [see Clinical Pharmacology (12.3)].
Patients with moderate and severe hepatic impairment should have serum calcium, serum phosphorus, and iPTH levels monitored closely throughout treatment with Sensipar because cinacalcet exposure (AUC0-inf) is increased by 2.4 and 4.2 fold, respectively, in these patients [see Warnings and Precautions (5.5) and Clinical Pharmacology (12.3)].
Doses titrated up to 300 mg once daily have been safely administered to patients on dialysis. Overdosage of Sensipar may lead to hypocalcemia. In the event of overdosage, patients should be monitored for signs and symptoms of hypocalcemia and appropriate measures taken to correct serum calcium levels [see Warnings and Precautions (5.1)].
Since Sensipar is highly protein bound, hemodialysis is not an effective treatment for overdosage of Sensipar.
Sensipar (cinacalcet) is a calcimimetic agent that increases the sensitivity of the calcium-sensing receptor to activation by extracellular calcium. Sensipar tablets contain the hydrochloride salt of cinacalcet. Its empirical formula is C22H22F3N·HCl with a molecular weight of 393.9 g/mol (hydrochloride salt) and 357.4 g/mol (free base). It has one chiral center having an R-absolute configuration. The R-enantiomer is the more potent enantiomer and has been shown to be responsible for pharmacodynamic activity.
The hydrochloride salt of cinacalcet is a white to off-white, crystalline solid that is soluble in methanol or 95% ethanol and slightly soluble in water.
Sensipar tablets are formulated as light-green, film-coated, oval-shaped tablets for oral administration in strengths of 30 mg, 60 mg, and 90 mg of cinacalcet as the free base equivalent (33 mg, 66 mg, and 99 mg as the hydrochloride salt, respectively).
The hydrochloride salt of cinacalcet is described chemically as N-[1-(R)-(-)-(1-naphthyl)ethyl]-3-[3-(trifluoromethyl)phenyl]-1-aminopropane hydrochloride and has the following structural formula:
Inactive Ingredients
The following are the inactive ingredients in Sensipar tablets: pre-gelatinized starch, microcrystalline cellulose, povidone, crospovidone, colloidal silicon dioxide and magnesium stearate. Tablets are coated with color (Opadry® II green), clear film coat (Opadry® clear), and carnauba wax.
Secondary HPT in patients with CKD is a progressive disease, associated with increases in PTH levels and derangements in calcium and phosphorus metabolism. Increased PTH stimulates osteoclastic activity resulting in cortical bone resorption and marrow fibrosis. The goals of treatment of secondary HPT are to lower the levels of PTH, calcium, and phosphorus in the blood in order to prevent progressive bone disease and the systemic consequences of disordered mineral metabolism. Reductions in PTH are associated with a decrease in bone turnover and bone fibrosis in patients with CKD on dialysis and uncontrolled secondary HPT.
The calcium-sensing receptor on the surface of the chief cell of the parathyroid gland is the principal regulator of PTH synthesis and secretion. Sensipar directly lowers PTH levels by increasing the sensitivity of the calcium-sensing receptor to extracellular calcium. The reduction in PTH is associated with a concomitant decrease in serum calcium levels. Measurements of PTH during the Sensipar studies were obtained using the Nichols IRMA.
Reduction in iPTH levels correlated with the plasma cinacalcet concentrations in patients with CKD. The nadir in iPTH level occurs approximately 2 to 6 hours post dose, corresponding with the maximum plasma concentration (Cmax) of cinacalcet. After steady-state cinacalcet concentrations are reached (which occurs within 7 days of dose change), serum calcium concentrations remain constant over the dosing interval in patients with CKD.
After oral administration of cinacalcet, Cmax is achieved in approximately 2 to 6 hours. Cinacalcet Cmax and AUC(0-inf) were increased by 82% and 68%, respectively, following administration with a high-fat meal compared with fasting in healthy volunteers. The Cmax and AUC(0-inf) of cinacalcet were increased by 65% and 50%, respectively, when cinacalcet was administered with a low-fat meal compared with fasting.
After absorption, cinacalcet concentrations decline in a biphasic fashion with a terminal half-life of 30 to 40 hours. Steady-state drug levels are achieved within 7 days, and the mean accumulation ratio is approximately 2 with once daily oral administration. The median accumulation ratio is approximately 2 to 5 with twice daily oral administration. The AUC and Cmax of cinacalcet increase proportionally over the dose range of 30 to 180 mg once daily. The pharmacokinetic profile of cinacalcet does not change over time with once daily dosing of 30 to 180 mg. The volume of distribution is approximately 1000 L, indicating extensive distribution. Cinacalcet is approximately 93% to 97% bound to plasma protein(s). The ratio of blood cinacalcet concentration to plasma cinacalcet concentration is 0.80 at a blood cinacalcet concentration of 10 ng/mL.
Cinacalcet is metabolized by multiple enzymes, primarily CYP3A4, CYP2D6, and CYP1A2. After administration of a 75 mg radiolabeled dose to healthy volunteers, cinacalcet was metabolized via: 1) oxidative N-dealkylation to hydrocinnamic acid and hydroxy-hydrocinnamic acid, which are further metabolized via β-oxidation and glycine conjugation; the oxidative N-dealkylation process also generates metabolites that contain the naphthalene ring; and 2) oxidation of the naphthalene ring on the parent drug forming dihydrodiols, which are further conjugated with glucuronic acid. The plasma concentrations of the major circulating metabolites, including the cinnamic acid derivatives and glucuronidated dihydrodiols, markedly exceed the parent drug concentrations. The hydrocinnamic acid metabolite and glucuronide conjugates have minimal or no calcimimetic activity. Renal excretion of metabolites was the primary route of elimination of radioactivity. Approximately 80% of the dose was recovered in the urine and 15% in the feces.
In vitro studies indicate that cinacalcet is a strong inhibitor of CYP2D6, but not an inhibitor of CYP1A2, CYP2C9, CYP2C19, and CYP3A4. In vitro induction studies indicate that cinacalcet is not an inducer of CYP450 enzymes. Tables 3 and 4 list the findings from in vivo drug-drug interaction studies.
| |||
Co-administered drug and dosing regimen | Cinacalcet | ||
Dose* | Mean change in AUC | Mean change in Cmax | |
200 mg ketoconazole twice daily for 7 days | 90 mg on day 5 | ↑128% | ↑116% |
1500 mg calcium carbonate, single dose | 100 mg | ↓6% | ↓5% |
80 mg pantoprazole daily for 3 days | 90 mg on day 3 | ↑1% | ↓3% |
2400 mg sevelamer HCl three times a day for 2 days | 90 mg on day 1 with first dose of sevelamer | ↓4% | ↓7% |
| |||
Cinacalcet dosing regimen | Co-administered drug | ||
Name and Dose | Mean change in AUC(0-inf) | Mean change in Cmax | |
30 mg twice daily for 8 days | 25 mg warfarin* tablet† | ↑1 % for R-warfarin ↓1% S-warfarin | ↓10 % for R-warfarin ↓12 % for S-warfarin |
90 mg daily for 7 days to CYP2D6 extensive metabolizers | 50 mg desipramine† | ↑264% | ↑75% |
90 mg daily for 5 days | 2 mg midazolam† | ↑5% | ↓5% |
25 or 100 mg single dose to CYP2D6 extensive metabolizers | 50 mg amitriptyline single dose | ↑21-22% for amitriptyline ↑17-23% for nortriptyline‡ | ↑13-21% for amitriptyline ↑11-15% for nortriptyline‡ |
The disposition of a 50 mg Sensipar single dose was compared between patients with hepatic impairment and patients with normal hepatic function. Cinacalcet exposure (AUC(0-inf) ) was comparable between healthy volunteers and patients with mild hepatic impairment. However, in patients with moderate and severe hepatic impairment (as indicated by the Child-Pugh method), cinacalcet exposures (AUC(0-inf)) were 2.4 and 4.2 fold higher, respectively, than that in healthy volunteers. The mean half-life of cinacalcet increased from 49 hours in healthy volunteers to 65 hours and 84 hours in patients with moderate and severe hepatic impairment, respectively. Protein binding of cinacalcet is not affected by impaired hepatic function [see Warnings and Precautions (5.5) and Use in Specific Populations (8.7)].
The pharmacokinetic profile of a 75 mg Sensipar single dose in patients with mild, moderate, and severe renal impairment, and those on hemodialysis or peritoneal dialysis is comparable with that in healthy volunteers [see Use in Specific Populations (8.6)].
The pharmacokinetic profile of cinacalcet in geriatric patients (age ≥ 65 years, n = 12) is similar to that for patients who are < 65 years of age (n = 268) [see Use in Specific Populations (8.5)].
The pharmacokinetics of cinacalcet has not been studied in patients < 18 years of age [see Use in Specific Populations (8.4)].
Standard lifetime dietary carcinogenicity bioassays were conducted in mice and rats. Mice were given cinacalcet at dietary doses of 15, 50, and 125 mg/kg/day in males and 30, 70, and 200 mg/kg/day in females (exposures up to 2 times those resulting with a human oral dose of 180 mg/day based on AUC comparison). Rats were given dietary doses of 5, 15, and 35 mg/kg/day in males and 5, 20, and 35 mg/kg/day in females (exposures up to 2 times those resulting with a human oral dose of 180 mg/day based on AUC comparison). No increased incidence of tumors was observed following treatment with cinacalcet.
Cinacalcet was not genotoxic in the Ames bacterial mutagenicity assay, nor in the Chinese Hamster Ovary (CHO) cell HGPRT forward mutation assay and CHO cell chromosomal aberration assay, with and without metabolic activation, nor in the in vivo mouse micronucleus assay.
Female rats were given oral gavage doses of 5, 25, and 75 mg/kg/day cinacalcet beginning 2 weeks before mating and continuing through gestation day 7. Male rats were given oral doses 4 weeks prior to mating, during mating (3 weeks) and 2 weeks postmating. No effects were observed in male or female fertility at 5 and 25 mg/kg/day (exposures up to 3 times those resulting with a human oral dose of 180 mg/day based on AUC comparison). At 75 mg/kg/day, there were slight adverse effects (slight decreases in body weight and food consumption) in males and females.
Three 6-month, multicenter, randomized, double-blind, placebo-controlled clinical studies of similar design were conducted in patients with CKD on dialysis. A total of 665 patients were randomized to Sensipar and 471 patients to placebo. The mean age of the patients was 54 years, 62% were male, and 52% were Caucasian. The average baseline iPTH level by the Nichols IRMA was 712 pg/mL, with 26% of the patients having a baseline iPTH level > 800 pg/mL. The mean baseline Ca x P ion product was 61 mg2/dL2. The average duration of dialysis prior to study enrollment was 67 months. Ninety-six percent of patients were on hemodialysis and 4% on peritoneal dialysis. At study entry, 66% of the patients were receiving vitamin D sterols and 93% were receiving phosphate binders. Sensipar (or placebo) was initiated at a dose of 30 mg once daily and titrated every 3 or 4 weeks to a maximum dose of 180 mg once daily to achieve an iPTH of ≤ 250 pg/mL. The dose was not increased if a patient had any of the following: iPTH ≤ 200 pg/mL, serum calcium < 7.8 mg/dL, or any symptoms of hypocalcemia. If a patient experienced symptoms of hypocalcemia or had a serum calcium < 8.4 mg/dL, calcium supplements and/or calcium-based phosphate binders could be increased. If these measures were insufficient, the vitamin D dose could be increased. Approximately 70% of patients in the Sensipar arm and 80% of the patients in the placebo arm completed the 6-month studies. In the primary efficacy analysis, 40% of the patients on Sensipar and 5% of placebo-treated patients achieved an iPTH ≤ 250 pg/mL (p < 0.001) (Table 5, Figure 1). These studies showed that Sensipar reduced iPTH while lowering Ca x P, calcium, and phosphorus levels (Table 5, Figure 2). The median dose of Sensipar at the completion of the studies was 90 mg. Patients with milder disease typically required lower doses.
Similar results were observed when either the iPTH or biointact PTH (biPTH) assay was used to measure PTH levels in CKD patients on dialysis; treatment with cinacalcet did not alter the relationship between iPTH and biPTH.
Values shown are medians unless indicated otherwise. | |||||||
| |||||||
Study 1 | Study 2 |
Suicidality and Antidepressant Drugs
Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of major depressive disorder (MDD) and other psychiatric disorders. Anyone considering the use of Chlordiazepoxide and Amitriptyline Hydrochloride Tablets or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in the risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. Chlordiazepoxide and Amitriptyline hydrochloride is not approved for use in pediatric patients (see WARNINGS: Clinical Worsening and Suicide Risk, PRECAUTIONS: Information for Patients, and PRECAUTIONS: Pediatric Use).
Chlordiazepoxide and amitriptyline hydrochloride tablets combine for oral administration, chlordiazepoxide, an agent for the relief of anxiety and tension, and amitriptyline, an antidepressant. Each film coated tablet for oral administration contains 5 mg chlordiazepoxide and 12.5 mg amitriptyline (as the hydrochloride salt) or 10 mg chlordiazepoxide and 25 mg amitriptyline as the hydrochloride salt).
Each tablet contains the following inactive ingredients: colloidal silicon dioxide, corn starch, hypromellose, hydroxypropyl cellulose, isopropyl alcohol, lactose anhydrous, macrogol/PEG-400, magnesium stearate, povidone, pregelatinized starch, sodium lauryl sulfate, and titanium dioxide. In addition, the 5mg/12.5 mg tablet includes FD&C Yellow #6 and FD&C Red #40
Chlordiazepoxide is a benzodiazepine with the formula 7-chloro-2-(methyl-amino)-5-phenyl-3H-1,4 benzodiazepine 4-oxide. It is a slightly yellow crystalline material and is insoluble in water. The chemical structure is:
Amitriptyline is a dibenzocycloheptadiene derivative. The formula is 10, 11-dihydro-N,N-dimethyl-5H dibenzo[a,d]cycloheptene-Δ5γ-propylamine hydrochloride. It is a white or practically white crystalline compound that is freely soluble in water. The chemical structure is:
Both components of chlordiazepoxide and amitriptyline hydrochloride tablets exert their action in the central nervous system. Extensive studies with chlordiazepoxide in many animal species suggest action in the limbic system. Recent evidence indicates that the limbic system is involved in emotional response. Taming action was observed in some species. The mechanism of action of amitriptyline in man is not known, but the drug appears to interfere with the reuptake of norepinephrine into adrenergic nerve endings. This action may prolong the sympathetic activity of biogenic amines.
Chlordiazepoxide and amitriptyline hydrochloride tablets are indicated for the treatment of patients with moderate to severe depression associated with moderate to severe anxiety.
The therapeutic response to chlordiazepoxide and amitriptyline hydrochloride tablets occurs earlier and with fewer treatment failures than when either amitriptyline or chlordiazepoxide is used alone.
Symptoms likely to respond in the first week of treatment include: insomnia, feelings of guilt or worthlessness, agitation, psychic and somatic anxiety, suicidal ideation and anorexia.
Chlordiazepoxide and amitriptyline hydrochloride is contraindicated in patients with hypersensitivity to either benzodiazepines or tricyclic antidepressants. It should not be given concomitantly with a monoamine oxidase inhibitor. Hyperpyretic crises, severe convulsions and deaths have occurred in patients receiving a tricyclic antidepressant and a monoamine oxidase inhibitor simultaneously. When it is desired to replace a monoamine oxidase inhibitor with chlordiazepoxide and amitriptyline hydrochloride, a minimum of 14 days should be allowed to elapse after the former is discontinued. Chlordiazepoxide and amitriptyline hydrochloride should then be initiated cautiously with gradual increase in dosage until optimum response is achieved.
This drug is contraindicated during the acute recovery phase following myocardial infarction.
Clinical Worsening and Suicide Risk: Patients with major depressive disorder (MDD), both adult and pediatric, may experience worsening of their depression and/or the emergence of suicidal ideation and behavior (suicidality) or unusual changes in behavior, whether or not they are taking antidepressant medications, and this risk may persist until significant remission occurs. Suicide is a known risk of depression and certain other psychiatric disorders, and these disorders themselves are the strongest predictors of suicide. There has been a long-standing concern, however, that antidepressants may have a role in inducing worsening of depression and the emergence of suicidality in certain patients during the early phases of treatment. Pooled analyses of short-term placebo controlled trials of antidepressant drugs (SSRIs and others) showed that these drugs increase the risk of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults (ages 18-24) with major depressive disorder (MDD) and other psychiatric disorders. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction with antidepressants compared to placebo in adults aged 65 and older.
The pooled analyses of placebo-controlled trials in children and adolescents with MDD, obsessive compulsive disorder (OCD), or other psychiatric disorders included a total of 24 short-term trials of 9 antidepressant drugs in over 4400 patients. The pooled analyses of placebo-controlled trials in adults with MDD or other psychiatric disorders included a total of 295 short-term trials (median duration of 2 months) of 11 antidepressant drugs in over 77,000 patients. There was considerable variation in risk of suicidality among drugs, but the tendency toward an increase in the younger patients for almost all drugs studied. There were differences in absolute risk of suicidality across the different indications, with the highest incidence in MDD. The risk differences (drug vs. placebo), however, were relatively stable within age strata and across indications. These risk differences (drug-placebo difference in the number of cases of suicidality per 1000 patients treated) are provided in Table 1.
Increases Compared to Placebo |
< 18 |
14 additional cases |
18-24 |
5 additional cases |
Decreases Compared to Placebo |
25-64 |
1 fewer case |
≥ 65 |
6 fewer cases |
No suicides occurred in any of the pediatric trials. There were suicides in the adult trials, but the number was not sufficient to reach any conclusion about the drug effect on suicide.
It is unknown whether the suicidality risk extends to longer-term use, i.e., beyond several months. However, there is substantial evidence from placebo-controlled maintenance trials in adults with depression that the use of antidepressants can delay the recurrence of depression.
All pediatric patients being treated with antidepressants for any indication should be monitored appropriately and observed closely for clinical worsening, suicidality, and unusual changes in behavior, especially during the initial few months of a course of drug therapy, or at times of dose changes, either increases or decreases.
The following symptoms, anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, and mania, have been reported in adult and pediatric patients being treated with antidepressants for major depressive disorder as well as for other indications, both psychiatric and nonpsychiatric. Although a causal link between the emergence of such symptoms and either the worsening of depression and / or the emergence of suicidal impulses has not been established, there is concern that such symptoms may represent precursors to emerging suicidality.
Consideration should be given to changing the therapeutic regimen, including possibly discontinuing the medication, in patients whose depression is persistently worse, or who are experiencing emergent suicidality or symptoms that might be precursors to worsening depression or suicidality, especially if these symptoms are severe, abrupt in onset, or were not part of the patient’s presenting symptoms.
Families and caregivers of patients being treated with antidepressants for major depressive disorder or other indications, both psychiatric and nonpsychiatric, should be alerted about the need to monitor patients for the emergence of agitation, irritability, unusual changes in behavior, and the other symptoms described above, as well as the emergence of suicidality, and to report such symptoms immediately to healthcare providers. Such monitoring should include daily observation by families and caregivers. Prescriptions for chlordiazepoxide and amitriptyline hydrochloride should be written for the smallest quantity of tablets consistent with good patient management, in order to reduce the risk of overdose.
Screening Patients for Bipolar Disorder: A major depressive episode may be the initial presentation of bipolar disorder. It is generally believed (though not established in controlled trials) that treating such an episode with an antidepressant alone may increase the likelihood of precipitation of a mixed/manic episode in patients at risk for bipolar disorder. Whether any of the symptoms described above represent such a conversion is unknown. However, prior to initiating treatment with an antidepressant, patients with depressive symptoms should be adequately screened to determine if they are at risk for bipolar disorder; such screening should include a detailed psychiatric history, including a family history of suicide, bipolar disorder, and depression. It should be noted that chlordiazepoxide and amitriptyline hydrochloride is not approved for use in treating bipolar depression.
General: Because of the atropine-like action of the amitriptyline component, great care should be used in treating patients with a history of urinary retention or angle-closure glaucoma. In patients with glaucoma, even average doses may precipitate an attack. Severe constipation may occur in patients taking tricyclic antidepressants in combination with anticholinergic-type drugs.
Patients with cardiovascular disorders should be watched closely. Tricyclic antidepressant drugs, particularly when given in high doses, have been reported to produce arrhythmias, sinus tachycardia and prolongation of conduction time. Myocardial infarction and stroke have been reported in patients receiving drugs of this class.
Because of the sedative effects of chlordiazepoxide and amitriptyline hydrochloride, patients should be cautioned about combined effects with alcohol or other CNS depressants. The additive effects may produce a harmful level of sedation and CNS depression.
Patients receiving chlordiazepoxide and amitriptyline hydrochloride should be cautioned against engaging in hazardous occupations requiring complete mental alertness, such as operating machinery or driving a motor vehicle.
Usage in Pregnancy: Safe use of chlordiazepoxide and amitriptyline hydrochloride tablets during pregnancy and lactation has not been established. Because of the chlordiazepoxide component, please note the following:
An increased risk of congenital malformations associated with the use of minor tranquilizers (chlordiazepoxide, diazepam and meprobamate) during the first trimester of pregnancy has been suggested in several studies. Because use of these drugs is rarely a matter of urgency, their use during this period should almost always be avoided. The possibility that a woman of childbearing potential may be pregnant at the time of institution of therapy should be considered. Patients should be advised that if they become pregnant during therapy or intend to become pregnant they should communicate with their physicians about the desirability of discontinuing the drug.
Withdrawal symptoms of the barbiturate type have occurred after the discontinuation of benzodiazepines (see DRUG ABUSE AND DEPENDENCE section).
Use with caution in patients with a history of seizures.
Close supervision is required when chlordiazepoxide and amitriptyline hydrochloride is given to hyperthyroid patients or those on thyroid medication.
The usual precautions should be observed when treating patients with impaired renal or hepatic function.
Patients with suicidal ideation should not have easy access to large quantities of the drug. The possibility of suicide in depressed patients remains until significant remission occurs.
Patients on prolonged treatment should have periodic liver function tests and blood counts.
Because of its amitriptyline component, chlordiazepoxide and amitriptyline hydrochloride may block the antihypertensive action of guanethidine or compounds with a similar mechanism of action.
Drugs Metabolized by P450 2D6: The biochemical activity of the drug metabolizing isozyme cytochrome P450 2D6 (debrisoquin hydroxylase) is reduced in a subset of the Caucasian population (about 7% to 10% of Caucasians are so called “poor metabolizers”); reliable estimates of the prevalence of reduced P450 2D6 isozyme activity among Asian, African and other populations are not yet available. Poor metabolizers have higher than expected plasma concentrations of tricyclic antidepressants (TCAs) when given usual doses. Depending on the fraction of drug metabolized by P450 2D6, the increase in plasma concentration may be small or quite large (8-fold increase in plasma AUC of the TCA).
In addition, certain drugs inhibit the activity of this isozyme and make normal metabolizers resemble poor metabolizers. An individual who is stable on a given dose of TCA may become abruptly toxic when given one of these inhibiting drugs as concomitant therapy. The drugs that inhibit cytochrome P450 2D6 include some that are not metabolized by the enzyme (quinidine; cimetidine) and many that are substrates for P450 2D6 (many other antidepressants, phenothiazines, and the type 1c antiarrhythmics propafenone and flecainide). While all the selective serotonin reuptake inhibitors (SSRIs), e.g., fluoxetine, sertraline and paroxetine, inhibit P450 2D6, they may vary in the extent of inhibition. The extent to which SSRI TCA interactions may pose clinical problems will depend on the degree of inhibition and the pharmacokinetics of the SSRI involved. Nevertheless, caution is indicated in the coadministration of TCAs with any of the SSRIs and also in switching from one class to the other. Of particular importance, sufficient time must elapse before initiating TCA treatment in a patient being withdrawn from fluoxetine, given the long half-life of the parent and active metabolite (at least 5 weeks may be necessary).
Concomitant use of tricyclic antidepressants with drugs that can inhibit cytochrome P450 2D6 may require lower doses than usually prescribed for either the tricyclic antidepressant or the other drug. Furthermore, whenever one of these other drugs is withdrawn from cotherapy, an increased dose of tricyclic antidepressant may be required. It is desirable to monitor TCA plasma levels whenever a TCA is going to be coadministered with another drug known to be an inhibitor of P450 2D6.
The effects of concomitant administration of chlordiazepoxide and amitriptyline hydrochloride and other psychotropic drugs have not been evaluated. Sedative effects may be additive.
Cimetidine is reported to reduce hepatic metabolism of certain tricyclic antidepressants and benzodiazepines, thereby delaying elimination and increasing steady-state concentrations of these drugs. Clinically significant effects have been reported with the tricyclic antidepressants when used concomitantly with cimetidine (Tagamet®).
The drug should be discontinued several days before elective surgery.
Concurrent administration of ECT and chlordiazepoxide and amitriptyline hydrochloride should be limited to those patients for whom it is essential.
It is not known whether this drug is excreted in human milk. As a general rule, nursing should not be undertaken while a patient is on a drug, since many drugs are excreted in human milk.
Safety and effectiveness in the pediatric population have not been established (see BOXWARNING and WARNINGS-Clinical Worsening and Suicide Risk).
Anyone considering the use of Chlordiazepoxide and Amitriptyline Hydrochloride Tablets in a child or adolescent must balance the potential risks with the clinical need.
In elderly and debilitated patients it is recommended that dosage be limited to the smallest effective amount to preclude the development of ataxia, over sedation, confusion or anticholinergic effects.
Of the total number of subjects in clinical studies of chlordiazepoxide and amitriptyline hydrochloride, 74 individuals were 65 years and older. An additional 34 subjects were between 60 and 69 years of age. No overall differences in safety and effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out.
The active ingredients in chlordiazepoxide and amitriptyline hydrochloride are known to be substantially excreted by the kidney and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection and it may be useful to monitor renal function.
Sedating drugs may cause confusion and over-sedation in the elderly; elderly patients generally should be started on low doses of chlordiazepoxide and amitriptyline hydrochloride and observed closely.
Clinical studies of chlordiazepoxide and amitriptyline hydrochloride did not include sufficient numbers of subjects aged 65 years and older to determine whether they respond differently than younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal or cardiac function and of concomitant disease or other drug therapy.
Prescribers or other health professionals should inform patients, their families, and their caregivers about the benefits and risks associated with treatment with chlordiazepoxide and amitriptyline hydrochloride and should counsel them in its appropriate use. A patient Medication Guide about “Antidepressant Medicines, Depression and other Serious Mental Illness, and Suicidal Thoughts or Actions” is available for chlordiazepoxide and amitriptyline hydrochloride. The prescriber or health professional should instruct patients, their families, and their caregivers to read the Medication Guide and should assist them in understanding its contents. Patients should be given the opportunity to discuss the contents of the Medication Guide and to obtain answers to any questions they may have. The complete text of the Medication Guide is reprinted at the end of this document.
Patients should be advised of the following issues and asked to alert their prescriber if these occur while taking chlordiazepoxide and amitriptyline hydrochloride.
Patients, their families, and their caregivers should be encouraged to be alert to the emergence of anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, mania, other unusual changes in behavior, worsening of depression, and suicidal ideation, especially early during antidepressant treatment and when the dose is adjusted up or down. Families and caregivers of patients should be advised to look for the emergence of such symptoms on a day-to-day basis, since changes may be abrupt. Such symptoms should be reported to the patient’s prescriber or health professional, especially if they are severe, abrupt in onset, or were not part of the patient’s presenting symptoms. Symptoms such as these may be associated with an increased risk for suicidal thinking and behavior and indicate a need for very close monitoring and possibly changes in the medication.
To assure the safe and effective use of benzodiazepines, patients should be informed that, since benzodiazepines may produce psychological and physical dependence, it is advisable that they consult with their physician before either increasing the dose or abruptly discontinuing this drug.
Adverse reactions to chlordiazepoxide and amitriptyline hydrochloride are those associated with the use of either component alone. Most frequently reported were drowsiness, dry mouth, constipation, blurred vision, dizziness and bloating. Other side effects occurring less commonly included vivid dreams, impotence, tremor, confusion and nasal congestion. Many symptoms common to the depressive state, such as anorexia, fatigue, weakness, restlessness and lethargy, have been reported as side effects of treatment with both chlordiazepoxide and amitriptyline HCl tablets and amitriptyline.
Granulocytopenia, jaundice and hepatic dysfunction of uncertain etiology have also been observed rarely with chlordiazepoxide and amitriptyline hydrochloride. When treatment with chlordiazepoxide and amitriptyline hydrochloride is prolonged, periodic blood counts and liver function tests are advisable.
Note: Included in the listing which follows are adverse reactions which have not been reported with chlordiazepoxide and amitriptyline hydrochloride. However, they are included because they have been reported during therapy with one or both of the components or closely related drugs.
Cardiovascular: Hypotension, hypertension, tachycardia, palpitations, myocardial infarction, arrhythmias, heart block, stroke.
Psychiatric: Euphoria, apprehension, poor concentration, delusions, hallucinations, hypomania and increased or decreased libido.
Neurologic: Incoordination, ataxia, numbness, tingling and paresthesias of the extremities, extrapyramidal symptoms, syncope, changes in EEG patterns.
Anticholinergic: Disturbance of accommodation, paralytic ileus, urinary retention, dilatation of urinary tract.
Allergic: Skin rash, urticaria, photosensitization, edema of face and tongue, pruritus.
Hematologic: Bone marrow depression including agranulocytosis, eosinophilia, purpura, thrombocytopenia.
Gastrointestinal: Nausea, epigastric distress, vomiting, anorexia, stomatitis, peculiar taste, diarrhea, black tongue.
Endocrine: Testicular swelling and gynecomastia in the male, breast enlargement, galactorrhea and minor menstrual irregularities in the female, elevation and lowering of blood sugar levels, and syndrome of inappropriate ADH (antidiuretic hormone) secretion.
Other: Headache, weight gain or loss, increased perspiration, urinary frequency, mydriasis, jaundice, alopecia, parotid swelling.
Withdrawal symptoms, similar in character to those noted with barbiturates and alcohol (convulsions, tremor, abdominal and muscle cramps, vomiting and sweating), have occurred following abrupt discontinuance of chlordiazepoxide. The more severe withdrawal symptoms have usually been limited to those patients who had received excessive doses over an extended period of time. Generally milder withdrawal symptoms (e.g., dysphoria and insomnia) have been reported following abrupt discontinuance of benzodiazepines taken continuously at therapeutic levels for several months. Withdrawal symptoms (e.g., nausea, headache and malaise) have also been reported in association with abrupt amitriptyline discontinuation. Consequently, after extended therapy, abrupt discontinuation should generally be avoided and a gradual dosage tapering schedule followed. Addiction-prone individuals (such as drug addicts or alcoholics) should be under careful surveillance when receiving chlordiazepoxide or other psychotropic agents because of the predisposition of such patients to habituation and dependence.
Deaths may occur from overdosage with this class of drugs. Multiple drug ingestion (including alcohol) is common in deliberate tricyclic antidepressant overdose. As the management is complex and changing, it is recommended that the physician contact a poison control center for current information on treatment. Signs and symptoms of toxicity develop rapidly after tricyclic antidepressant overdose; therefore, hospital monitoring is required as soon as possible.
Manifestations: Critical manifestations of overdose include: cardiac dysrhythmias, severe hypotension, convulsions and CNS depression, including coma. Changes in the electrocardiogram, particularly in QRS axis or width, are clinically significant indicators of tricyclic antidepressant toxicity.
Other signs of overdose may include: confusion, disturbed concentration, transient visual hallucinations, dilated pupils, agitation, hyperactive reflexes, stupor, drowsiness, muscle rigidity, vomiting, hypothermia, hyperpyrexia or any of the symptoms listed under ADVERSE REACTIONS.
Management: General: Obtain an ECG and immediately initiate cardiac monitoring. Protect the patient’s airway, establish an intravenous line and initiate gastric decontamination. A minimum of 6 hours of observation with cardiac monitoring and observation for signs of CNS or respiratory depression, hypotension, cardiac dysrhythmias and/or conduction blocks, and seizures is necessary. If signs of toxicity occur at any time during this period, extended monitoring is required. There are case reports of patients succumbing to fatal dysrhythmias late after overdose; these patients had clinical evidence of significant poisoning prior to death and most received inadequate gastrointestinal decontamination. Monitoring of plasma drug levels should not guide management of the patient.
Gastrointestinal Decontamination: All patients suspected of tricyclic antidepressant overdose should receive gastrointestinal decontamination. This should include large volume gastric lavage followed by activated charcoal. If consciousness is impaired, the airway should be secured prior to lavage. Emesis is contraindicated.
Cardiovascular: A maximal limb-lead QRS duration of ≥ 0.10 seconds may be the best indication of the severity of the overdose. Serum alkalinization, to a pH of 7.45 to 7.56, using intravenous sodium bicarbonate and hyperventilation (as needed) should be instituted for patients with dysrhythmias and/or QRS widening. A pH > 7.60 or a pCO2 < 20mm Hg is undesirable. Dysrhythmias unresponsive to sodium bicarbonate therapy/hyperventilation may respond to lidocaine, bretylium or phenytoin. Type 1A and 1C antiarrhythmics are generally contraindicated (e.g., quinidine, disopyramide and procainamide).
In rare instances, hemoperfusion may be beneficial in acute refractory cardiovascular instability in patients with acute toxicity. However, hemodialysis, peritoneal dialysis, exchange transfusions and forced diuresis generally have been reported as ineffective in tricyclic antidepressant poisoning.
CNS: In patients with CNS depression, early intubation is advised because of the potential for abrupt deterioration. Seizures should be controlled with benzodiazepines, or if these are ineffective, other anticonvulsants (e.g., phenobarbital, phenytoin). Physostigmine is not recommended except to treat life-threatening symptoms that have been unresponsive to other therapies, and then only in consultation with a poison control center.
Psychiatric Follow-up: Since overdosage is often deliberate, patients may attempt suicide by other means during the recovery phase. Psychiatric referral may be appropriate.
Pediatric Management: The principles of management of child and adult overdosages are similar. It is strongly recommended that the physician contact the local poison control center for specific pediatric treatment.
*Poisindex® Toxicologic Management. Topic: Antidepressants, Tricyclic. Micromedex Inc., Vol. 85.
Chlordiazepoxide Overdosage: Manifestations of benzodiazepine overdosage include somnolence, confusion, coma and diminished reflexes. Dialysis is of limited value. There have been occasional reports of excitation in patients following benzodiazepine overdosage; if this occurs, barbiturates should not be used. Withdrawal symptoms of the barbiturate type have occurred after the discontinuation of benzodiazepines (see DRUG ABUSE AND DEPENDENCE section). Since chlordiazepoxide and amitriptyline hydrochloride contains amitriptyline, it is important to note that use of the benzodiazepine antagonist flumazenil is contraindicated in patients who are showing signs of serious cyclic antidepressant overdose.
Optimum dosage varies with the severity of the symptoms and the response of the individual patient. When a satisfactory response is obtained, dosage should be reduced to the smallest amount needed to maintain the remission. The larger portion of the total daily dose may be taken at bedtime. In some patients, a single dose at bedtime may be sufficient. In general, lower dosages are recommended for elderly patients.
Chlordiazepoxide and amitriptyline hydrochloride tablets are recommended in an initial dosage of 3 or 4 tablets daily in divided doses; this may be increased to 6 tablets daily as required. Some patients respond to smaller doses and can be maintained on 2 tablets daily.
Chlordiazepoxide and amitriptyline hydrochloride tablets in an initial dosage of three or four tablets daily in divided doses may be satisfactory in patients who do not tolerate higher doses.
Chlordiazepoxide and amitriptyline hydrochloride tablets are supplied as follows:
5 mg/ 12.5 mg tablets are peach colored, round, film coated tablets debossed “PAR” on one side and “265” on the other side. They are available in bottles of 100’s (NDC 49884-265-01).
10 mg/ 25 mg tablets are white, round, film coated tablets debossed “PAR” on one side and “266” on the other side. They are available in bottles of 100’s (NDC 49884-266-01).
Store at 25°C (77°F); excursions permitted to 15° – 30°C (59° - 86 °F). Store in a dry place.
Antidepressant Medicines, Depression and Other Serious Mental Illness,And Suicidal Thoughts or Actions
Read the Medication Guide that comes with you or your family member’s antidepressant medicine. This Medication Guide is only about the risk of suicidal thoughts and actions with antidepressant medicines. Talk to your, or your family member’s, healthcare provider about:
What is the most important information I should know about antidepressant medicines, depression and other serious mental illness, and suicidal thoughts or actions?
Call a healthcare provider right away if you or your family member has any of the following symptoms, especially if they are new, worse, or worry you:
What else do I need to know about antidepressant medicines?
Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088 or contact Par Pharmaceutical Companies, Inc., at 1-800-828-9393.
This Medication Guide has been approved by the U.S. Food and Drug Administration for all antidepressants.
PAR PHARMACEUTICALCOMPANIES, INC.
CHLORDIAZEPOXIDE AND AMITRIPTYLINE HCL chlordiazepoxide and amitriptyline hydrochloride tablet | ||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||
|
Marketing Information | |||
Marketing Category | Application Number or Monograph Citation | Marketing Start Date | Marketing End Date |
ANDA | ANDA072277 | 05/09/1988 |
CHLORDIAZEPOXIDE AND AMITRIPTYLINE HCL chlordiazepoxide and amitriptyline hydrochloride tablet | ||||
|